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Nonperiodic grassland restoration management can
promote native woody shrub encroachment

Justin C. Luong'~

Woody species encroachment is increasingly displacing grasslands, negatively impacting regional plant richness and reducing
economic productivity from grazing. Although intermediate disturbance has been found to reduce woody species encroachment
and maximize species diversity, ecological restoration can often lead to many small, infrequent disturbances. These small distur-
bances may not be strong enough to limit woody encroachment, and instead may promote invasion. Drought may slow encroach-
ment, but adjustments in key functional traits may allow for persistent woody invasion. Baccharis pilularis is a woody shrub native
to western North America, but has been shown to have higher recruitment following nonperiodic disturbances and be invasive in
native grasslands. To address the extent of woody invasion following limited restoration actions, I quantified natural B. pilularis
recruitment and cover at an invaded coastal California grassland in plots after experimental restoration (singular planting and
nonnative species control efforts) and extreme drought conditions (60% rain exclusion) 6 years posttreatment. For traits, I mea-
sured B. pilularis specific leaf area, major vein length per unit area, leaf thickness, and lobedness 4 years posttreatment and stem
diameter 5 years posttreatment. Native shrub encroachment by B. pilularis was higher in restored plots compared to nonrestored
plots, which had zero recruitment. Drought reduced B. pilularis recruitment but not cover and resulted in adjustments in leaf
thickness and major vein length per area. Results suggest that planting and other singular restoration activities (i.e. invasive spe-
cies control) in coastal grasslands can cause small, infrequent disturbances that promote native woody shrub encroachment.
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et al. 2017). Historic disturbance regimes were typically imple-
mented by indigenous tribes through prescribed burns
(Anderson 2007) and can limit woody invasion (DeSantis
et al. 2011). Many grasslands were also previously grazed by
now-extirpated or extinct ungulates which also helped to abate
woody shrub invasion (Wigand 2007). As previous research has
found moderate disturbance is required to maintain grasslands
and maximize species diversity (Hobbs & Huenneke 1992; Peter-
son & Reich 2008; Mayor et al. 2012), the intermediate distur-
bance hypothesis (Connell 1978), may provide a fitting
framework to describe grassland community dynamics. In fact,
this may be the theoretical basis for grazing programs and annual
mowing that historically employed by land managers and restora-
tion practitioners in grasslands globally (Télle et al. 2016).

Habitat type conversion occurs when a habitat surpasses a
threshold that causes the system to be converted to a different
ecosystem (Beisner et al. 2003). Protecting grasslands in Cali-
fornia from habitat conversion is a strong conservation priority
because they support high levels of herbaceous diversity that
are not often present in temperate shrub or woodlands (Ford &
Hayes 2007). For example, a survey from California grasslands
found that just 13 remnant grasslands harbored more than 40%
of state’s total native plant diversity, along with several rare
and endangered species of concern (Schiffman 2007). California
native grasslands previously encompassed 25% of the state, but
only 1% of native grasslands have not been strongly affected by
land development or species invasions since European coloniza-
tion (Jantz et al. 2007). Historic and large reductions of native
grasslands indicate that restoration will be needed for future hab-
itat recovery. However, similar to many other regions in the
world, woody species encroachment has been documented to
be increasing in California for nearly a century (McBride &
Heady 1968; Williams et al. 1987; Laris et al. 2017).

Studies from both Texas and South Africa suggest that
extended droughts may constrain and potentially reverse woody
species encroachment (Twidwell et al. 2014; Case et al. 2020).
In Australia, woody species encroachment was found to be slo-
wed, but not reversed by extreme drought (Zeeman et al. 2014).
More research is needed to understand how woody species and
grasslands in California will respond, because it is expected that
rainfall will become more spatially and temporally variable, por-
tending longer and more extreme droughts (Swain et al. 2018).
Increased temporal variability in rainfall will lead to less available
water for plant use (Loik et al. 2004), and potentially slow woody
species encroachment (Twidwell et al. 2014; Zeeman et al. 2014;
Case et al. 2020). Functional traits may be especially useful in
understanding the mechanisms that potentially halt woody inva-
sion during drought (Cadotte et al. 2015; Luong et al. 2021).
For example, wood density, which is negatively related to stem
diameter (Chave et al. 2009; Markesteijn et al. 2011), can support
higher drought tolerance through cavitation resistance (Hacke
et al. 2001) and help explain woody encroachment during
drought, while key leaf traits are often related to resource acquisi-
tion and drought tolerance (Sack & Scoffoni 2013; Cadotte
et al. 2015; Pérez-Harguindeguy et al. 2016).

Ecological restoration attempts to enhance degraded ecosys-
tems through common practices such as nonnative species

removal and reintroductions (via planting and seeding) of native
species (Gann et al. 2019). Planting efforts and nonnative species
removal often lead to small-scale soil disturbances (D’ Antonio &
Meyerson 2002). Disturbed open spaces freed from nonnative
species removal are often recolonized during secondary invasions
of fast growing, unplanted native or nonnative species with high
reproductive output (Zavaleta et al. 2001; Pearson et al. 2016).
Although intermediate disturbance such as periodic burning,
grazing, or mowing may serve to improve species richness in
restored grasslands (Connell 1978; Hobbs & Huenneke 1992),
restoration often focuses limited resources solely on the removal
of the most noxious nonnative species and ignore most other
plants (Holl & Howarth 2000; Pearson et al. 2016). Newly bared
ground may effectively provide open habitat for fast-growing
shrubs to invade during ideal years (Tyler et al. 2007; Pierce
et al. 2017). A common native woody invader in California,
Baccharis pilularis DC., was previously found to establish better
when nearby nonnative annual grasses were removed (da Silva &
Bartolome 1984) and found to frequently encroach into California
coastal grasslands (McBride & Heady 1968).

Reestablishing historic disturbance regimes is another grow-
ing restoration practice, but past evidence indicates that tempo-
rally limited restoration actions can promote native and
nonnative woody invasion in open grassland habitat (Hobbs &
Mooney 1985; Laris et al. 2017; Abella et al. 2020; Hopkinson
et al. 2020). Abella et al. (2020) and Hopkinson et al. (2020)
both found that singular prescribed fires without additional
maintenance promoted woody invasion. In pampa grasslands,
researchers found that singular small- and large-scale experi-
mental disturbances led to increased recruitment of woody tree
species in mesic conditions, but not consistently for drier plots
(Mazia et al. 2019). Peltzer and Wilson (2006) found that
extreme weather events could also result in disturbances
that promotes woody species invasion. Laris et al. (2017) found
that B. pilularis recruited heavily after mechanical removal of
nonnative species. Mechanical removal is a common method
used for invasive species control in restoration (Stromberg
et al. 2007) and therefore may indicate at very least that some
restoration activities can facilitate grassland woody invasion.

I was interested in the role that key restoration actions (singu-
lar planting and seeding) and drought had in influencing native
woody shrub encroachment in grasslands by B. pilularis
because of stark visual differences in B. pilularis cover observed
4 years posttreatment (Fig. S1). To test this, I took advantage
of experimental plots at a coastal grassland in Santa Cruz,
California, U.S.A. that were exposed to extreme drought, and
previously restored experimentally though native species out-
planting (Luong et al. 2021). I measured leaf functional traits
(specific leaf area, major vein length per unit area, lobedness,
and thickness) 4 years posttreatments and quantified the average
stem diameter and abundance of B. pilularis 4- and 5-year post-
treatment, and cover and recruitment 6-year posttreatment. I pre-
dicted that increase woody species encroachment (higher
abundance of B. pilularis) would be promoted by singular resto-
ration actions and be curtailed by drought. I hypothesized that
B. pilularis would exhibit leaf trait adjustments that help explain
its persistence through drought.
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Methods

Study Site

The study was completed at the University of California Youn-
ger Lagoon Reserve (YLR) in Santa Cruz, California,
U.S.A. The climate is characterized as Mediterranean with
wet, cool winters and hot, dry summers. The area was histori-
cally utilized for cattle grazing and row crop agriculture before
becoming a reserve in 1986. Legacy effects persist and the site
is dominated by invasive species, notably Avena barbata Pott
ex Link (Poaceae), Festuca perennis (L.) Columbus & J.P
Sm. (Poaceae), Bromus diandrus Roth (Poaceae), Medicago
polymorpha L. (Fabaceae), Cirsium vulgare (Savi) Ten.
(Asteraceae), Geranium dissectum L. (Geraniaceae), and
Raphanus sativus L. (Brassicaceae) with some native species,
such as Baccharis pilularis (Asteraceae), Erigeron canadensis
L. (Asteraceae), and Elymus triticoides Buckley (Poaceae).

Experimental Design

I utilized previously constructed rain exclusion (drought) shel-
ters designed using a standardized protocol in 2015 as a part of
the International Drought Experiment. Structures exclude 60%
of incoming precipitation to simulate a 1-in-100-year drought
after 5 years. These structures have been shown in situ induce
drought with minimal nontarget effects, although they were
documented to minimally reduce photosynthetically active radi-
ation (PAR) and increase nighttime temperature by about 0.6°C
(Loik et al. 2019). Rain exclusion plots were trenched and lined
with 6-mil plastic to 50 cm depth to inhibit lateral water flow.
The research plots are 3 x 3 m with a 0.5-m buffer around all
edges resulting in a total 4 x 4 m area for each plot (Fig. 1).
Plots were placed at least 1 m after accounting for buffer areas.
Drought-induced reduction of soil moisture in these plots were

Drought shelter plots

Ambient control plots

confirmed in a previous field study with METER Environmental
volumetric soil moisture probes (Luong et al. 2021). Standing
biomass was removed via mowing from the research area and
interstitial buffer areas prior to demarking twenty 4 x 4 m plots
for the experiment. There was a full drought X restoration facto-
rial design with five replicates for each treatment: (1) no exper-
imental restoration and no drought (control; Fig. S1A);
(2) experimental restoration only (Fig. S1B); (3) drought only
(Fig. S1C); and (4) drought and experimental restoration
(Fig. S1D). Plots were placed in an invaded annual grassland
on area with visually similar vegetation, typically consisting of
nonnative annual grasses and forbs, to avoid potential effects
of site heterogeneity.

Experimental restoration included plantings that were previ-
ously installed as part of an ongoing experiment established in
2016 using a standard grid that was prerandomized (Luong
etal. 2021). Because the original restoration experiment had dif-
ferent research goals, the planting design included three woody
species to better assess the community level effect of drought on
experimental restoration (Luong et al. 2021). The three woody
species from the planting palette commonly occur in coastal
sage scrub habitat that may naturally disperse into nearby grass-
lands, but are not often quick growing or invasive (Ford &
Hayes 2007), unlike B. pilularis (McBride & Heady 1968), so
they were not analyzed as encroaching woody natives. The
12 species were (Table S1) collected in 2015 from local refer-
ence sites and were grown in the UC Santa Cruz Jean
H. Langenheim Greenhouses for about 3 months in “cone-tainer
pots” (107 mL; Ray Leach—Stubby Cell Classic) in Pro-Mix
Potting Soil Mix (Pro-Mix) prior to out-planting in January
2016. After planting, all nonnative plants were removed from
restoration treatments manually with small hand tools once in
January 2016 and a final time in April 2016. Buffer areas
between plots were maintained through annual spring mowing,

B. pilularis and bare ground
cover was assessed in six
randomly selected subplots

20 plots of 3 x3 m
with 1 m edge buffer

Figure 1. A photograph of the experimental design and Baccharis pilularis cover sampling methods. Drought plots exclude 60% of incoming rainfall. Ambient
rainfall plots had no climate manipulations. B. pilularis and bare ground cover were assessed in six randomly selected subplot within 3 x 3 m plots with 1 m

buffers around all edges.
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but no other restoration activities were conducted on experimen-
tal plots after April 2016.

Data Collection

I assessed the cover of B. pilularis in 2021, the sixth year after
planting, by estimating its relative cover to the nearest 5%
within six 0.25-m? quadrats on each plot (Fig. 1). I also esti-
mated the cover of bare ground within quadrats. I counted the
total number of B. pilularis individuals within each plot in
2019 and 2020 (fifth and sixth year postplanting). I quantified
leaf functional traits from five B. pilularis per plot in 2019,
4 years after initial treatments, and stem diameter for every
individual in 2020. I collected leaves from up to four
B. pilularis per plot to assess key functional traits and sampled
two leaves per individual to account for variability. Leaves
sampled were west facing, fully expanded, undamaged and
three levels below the apical meristem on a given branch.
Using standardized protocols, I measured specific leaf area
(SLA), leaf thickness, major vein length per unit area (VLA),
stem diameter, and leaf lobedness because they are related to
plant hydraulics or water use (Hacke et al. 2001; Sack & Scof-
foni 2013; Cadotte et al. 2015; see Pérez-Harguindeguy
et al. 2016 for more detail on trait measurements). SLA is cor-
related with relatively high investments in structural leaf
defenses and increased leaf lifespan. Major VLA of leaves
can increase drought resistance by providing redundant path-
ways for hydraulic transport (Sack & Scoffoni 2013). How-
ever, increased VLA can also increase water requirements
(Lambers et al. 2008), especially if the veins are not reticulated
with minor vein networks. Leaf area and perimeter were mea-
sured using ImageJ software (Schneider et al. 2012). Leaf
thickness was measured with a digital micrometer and is a
proxy for higher mesophyll resistance against water movement
through the leaf. Similar to VLA, the leaf thickness may have a
mixed response to drought. Increased thickness can support
more chloroplast and photosynthesis thereby increasing water
demand (Lambers et al. 2008) but can also increase mesophyll

(A) 50

40
E (Drought) p = 0.046
> Ambient (Restoration) p < 0.001
8 30 Rain exclusion
8%) <> Control
T /\ Restored
§ 20
q
Q10

O v v
2019 2020

Sampling year

resistance to water loss (Krober et al. 2015). Higher leaf lobed-
ness can effectively decrease the leaf air boundary layer
increasing potential for cooling via convection and conduction
(Lambers et al. 2008).

SLA was calculated as the ratio of fresh leaf area by oven-
dried mass. VLA was quantified by measuring primary and
secondary veins from fresh leaf scans using Image] and was
standardized via fresh leaf area. Leaf lobedness was calculated
as leaf perimeter squared divided by z and leaf area (Cadotte
et al. 2015; Luong et al. 2021). Due to restrictions for in-person
laboratory work from COVID-19, I was not able to collect and
process leaf traits past year four (2019).

Analyses

All analyses were completed in R Statistical Software V
4.0.2 (R Core Team 2020) with base functions and the plyr
and ggplot2 packages (Kassambara et al. 2020; Wick-
ham 2020). Data were tested for parametric assumptions
prior to using ¢-tests, analysis of variance (ANOVA) or gen-
eralized linear models (GLMs). For count data, sampling
year was included as a random effect. VLA was slightly non-
parametric so I used a log-based transformation to meet sta-
tistical assumptions for a r-test, then back-transformed
these data for visualization. No other measurements required
transformation. Prior to analyzing functional traits, I aver-
aged the values of the two collected leaves from the same
individual. I then took the average of all measured individ-
uals to calculate the mean at the plot level. All data were ana-
lyzed at the plot level (n = 5).

Results

The invading native shrub, Baccharis pilularis had higher abun-
dance (F =20.1,df=1, p < 0.001) and cover (F = 140, df =1,
p <0.001) on restored plots compared to unrestored control
plots, which had no B. pilularis (Fig. 2). Drought resulted in
lower individual B. pilularis counts on drought plots

=

80 (Drought) p = 0.561
(Restoration) p < 0.001

60

40

20

B. pilularis cover (%)

Control Restored
Restoration treatment

Figure 2. (A) Comparison of Baccharis pilularis counts 2019-2020. Points represent the count of B. pilularis in a given plot. (B) B. pilularis cover in 2021 for
restored and nonrestored plots experiencing ambient (blue) or drought (orange) conditions. Boxes represents the interquartile range; the inner horizontal line
represents the median. Lines extending out of the box represent the upper and lower quartiles. Points represent outliers. p values are presented within figures for

drought and restoration treatments after respective text labels.
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Figure 3. Baccharis pilularis (A) stem diameter (cm), (B) leaf thickness (mm), (C) SLA (specific leaf area; cmZ/g), (D) VLA (major vein length per unit
area; cm™ 1), and (E) leaf lobedness (unitless) compared between drought (orange) and ambient (blue) treatments. Leaf traits (B—E) were taken in 2019. Stem
diameter was measured in 2020. Boxes represent the interquartile range; the inner horizontal line represents the median. Lines extending out of the box represent

the upper and lower quartiles. Points represent outliers. N.S., nonsignificant.

(F =4.30,df =1, p = 0.046), but did not affect cover values
(F=0.352,df=1,p=0.561). Abundance did not vary between
years (F = 0.001, df = 1, p = 0.976).

B. pilularis exhibited adjustments for stem diameter
(p = 0.031, df = 56.48, t = —2.21), major VLA (p = 0.030,
df =7.37, t = 2.20), and leaf thickness (p = 0.027, df = 4.33,
t = —2.64), but not SLA (p = 0.695, df = 6.16, t = —0.412)
nor lobedness (p = 0.233, df = 6.69, t = 1.31). B. pilularis
had greater stem diameter and leaf thickness, but lower major
VLA on drought plots (Fig. 3).

Bare ground cover increased on drought plots (F = 7.73,
df =1, p =0.013), but was unaffected by experimental restora-
tion (F = 0.019,df = 1, p = 0.891).

Discussion

Sixyears after initial treatments I found Baccharis pilularis-
growing only in the restored plots, which indicates that restora-
tion activities without ongoing management could facilitate
woody shrub encroachment. Although periodic disturbance
administered through grazing or prescribed burns can prevent
woody species encroachment in grasslands (Smit et al. 2016;
Hopkinson et al. 2020; O’Connor et al. 2020), nonperiodic dis-
turbances have been found to positively correlate with
B. pilularis abundance (Tyler et al. 2007; Laris et al. 2017).

When practitioners are performing restoration either through
invasive species removal or out-planting, they are creating small
nonperiodic disturbances (D’Antonio et al. 2016) which could
promote B. pilularis recruitment. However, these disturbances
are likely supporting recruitment through mechanisms aside
from baring ground and clearing open space for germination
because the presented data show that drought resulted in
decreased B. pilularis recruitment (albeit similar cover) despite
increased bare ground cover. Soil disturbances often facilitate
invasion of seed prolific species like B. pilularis because they
germinate quickly and have high growth rates (McBride &
Heady 1968; Pierce et al. 2017). Planting and invasive species
control can also result in reduced soil compaction that facilitates
invasion (Kyle et al. 2007).

Because grasslands are historically disturbance-dependent
(Ford & Hayes 2007; De Bello et al. 2013; Stevens et al. 2017),
especially in California, where grasslands were periodically
burned by indigenous tribes as traditional ecological practices
(Anderson 2007), the Intermediate Disturbance Hypothesis
(IDH) may provide insight on the pattern I observed in this study
(Connell 1978; Hobbs & Huenneke 1992). At this study site, the
plots were only weeded twice in the first year after a singular
planting event, and had no further management actions. The
IDH predicts that infrequent or small disturbances are not large
enough to maintain extant ecosystem dynamics. Extreme

Restoration Ecology

50f8



Aperiodic restoration actions cause woody invasion

disturbances can push the system toward type conversion
(Beisner et al. 2003), whereas moderate or intermediate distur-
bance is required to maintain the system and maximize diversity
(Mayor et al. 2012). Indeed, results support that temporally lim-
ited experimental restoration was insufficient disturbance to limit
B. pilularis recruitment, which may lead to decreased native spe-
cies richness in later years (Van Auken 2009; Ratajczak
et al. 2012). In accordance with IDH, allocating resources to
implement a periodic disturbance regime may serve to manage
woody species invasion. A review by Hobbs and Huenneke
(1992) found that periodic disturbance can maintain and support
higher taxonomic diversity, whereas Peterson and Reich (2008)
found periodic fire was useful in preventing a gradual conversion
of grasslands to forests. Fire employed as a periodic management
practice increased native plant and avian diversity in a Brazilian
grassland (Beal-Neves et al. 2020). Furthermore, an assessment
of the savanna biome found that the occurrence of African
savannas was correlated with areas with regular fire return inter-
vals (Lehmannetal. 2011), whereas O’Connor et al. (2020) found
fire can reduce the dominance of encroaching shrubs into a native
grassland. Moreover, similar to our results, singular prescribed
fires (disturbance), were found to promote woody invasion
(Abella et al. 2020; Hopkinson et al. 2020).

B. pilularis recruitment was stunted by drought. It is plausible
drought could potentially act as an annual or semiregular distur-
bance event (Derose & Long 2012) preventing type conversion
as predicted by the IDH. However, studies from grasslands in
both Texas and South Africa suggest that extended droughts
may constrain and potentially reverse woody species encroach-
ment (Twidwell et al. 2014; Case et al. 2020). In Australia,
woody species encroachment was found to be slowed, but not
reversed by extreme drought (Zeeman et al. 2014). Therefore,
it is more likely that B. pilularis was not able to establish at high
rates, in part, due to xeric conditions rather than drought acting
as an intermediate disturbance. In fact, it has been observed else-
where that woody invaders often establish better during wet
periods (Williams et al. 1987; Browning et al. 2008).

Observed changes in hydraulic related functional leaf traits
may explain, in part, how B. pilularis persisted through extreme
drought and achieved similar cover as those from control plots
at lower abundances. Alternatively, trait differences may be in
response to reduced interspecific competition (Bolnick
et al. 2011; Welles & Funk 2021). Rain exclusion resulted in
B. pilularis having thicker leaves but lower major VLA to support
reduced leaf water transpiration. Higher leaf thickness can
decrease transpiration by increasing mesophyll resistance and
reduced major VLA could lead to decreased rates of carbon
assimilation and stomatal conductance thereby reducing water
transport requirements (Lambers et al. 2008; Sack & Scof-
foni 2013; Krober et al. 2015). It is, however, possible that leaf
thickness increased due to nontarget shelter effects (Loik
etal. 2019) in response to reduced PAR resulting in compensatory
photosynthesis (Lambers et al. 2008). In past work, stem diameter
was shown to be negatively related to wood density (Markesteijn
et al. 2011), and because increased wood density improves
drought and cavitation resistance (Chave et al. 2009), higher stem
diameter may promote more drought-related mortality (Twidwell

et al. 2014). Stem diameter, similar to cover of B. pilularis, likely
increased due to reduced intraspecific competition, because it
increased as total B. pilularis abundance decreased.

These results are novel in documenting woody invasion by a
native species following manual hand removal during active
grassland restoration. They also support past research that indi-
cates that certain restoration actions can promote woody
encroachment into grasslands (Laris et al. 2017; Abella
et al. 2020; Hopkinson et al. 2020). Experimental grassland res-
toration (via planting and nonnative species control) resulted in
increased woody shrub invasion compared to nonrestored plots,
and B. pilularis recruitment, but cover was not diminished,
although not reversed by extreme drought. Restoration practi-
tioners that work within coastal grasslands may consider revisit-
ing restored grasslands after planted or an opportunistic targeted
weeding event in a subsequent year to ensure their area is not
being overtaken by woody species. Practitioners may also con-
sider utilizing periodic prescribed burns which can slow woody
species encroachment. In some cases, burns have been shown to
reverse encroachment when applied with sufficient periodicity
and intensity. Prescribed burns will also clear litter accumulation
(Anderson 2007) which can promote species invasions in Cali-
fornia grasslands (Stromberg et al. 2007). However, as previ-
ously noted, nonperiodic prescribed burns may further
promote woody invasion (Abella et al. 2020; Hopkinson et al.
2020). When fire is not feasible, management may consider
manual removal with regular return intervals. Spatially and tem-
porally targeted grazing and mowing could also be employed to
implement a regular disturbance regime to maintain grasslands.
Further research about the rate of woody invasion following
grassland restoration using agency implemented projects can
indicate if this trend is consistent across larger spatial scales.
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